Minggu, 15 Mei 2011

Pencarian

1. Pencarian Sekuensial
“Sequential search atau Pencarian sekuensial” bisa disebut dengan pencarian linear yang merupakan model pencarian yang paling simpel dan sederhana banget deh yang dapat dilakukan terhadap suatu kumpulan data. Suatu tekhnik pencarian dalam array (1 dimensi) yang akan menelusuri semua elemen-elemen array dari awal sampai akhir, dimana data-data tidak perlu diurutkan terlebih dahulu.

Biar kalian lebih paham secara konsep, penjelasannya adalah sebagai berikut :
Keunggulan dari pencarian sekuensial ini adalah jika data yang dicari terletak di indeks array terdepan maka waktu dalam pencarian nya sangat cepat, dalam artian waktu yang minim sekali. Keburukannya adalah kalau jika data indeks array nya yang dicari paling belakang, maka waktu yang dicari tuh lama banget (maksimal).

Terdapat L yang merupakan larik yang berisi n buah data ( L[0],L[1]…….L[n-1]) dan k adalah data yang akan dicari. Pencarian dilakukan untuk menemukan L[i] = k dengan i adalah bilangan indeks terkecil yang memenuhi kondisi 0<= k <=n-1. Tentu saja bahwa data yang di cari tidak ditemukan. Jika misalnya terdapat angka 4, maka ditulis ada, sedangkan jika dimunculkan angka 6, namun angka 6 tidak ada maka akan muncul tulisan tidak ada. Algoritma Pada dasarnya, algoritma pencarian ini adalah proses membandingkan setiap elemen larik satu per satu secara beruntun sampai seluruh elemen diperiksa. program pencarian; uses crt; procedure seq_search; var L: array[1..5] of integer; bil,i: integer; begin write('Angka yang dicari= '); readln(bil); L[1]:=1; L[2]:=3; L[3]:=5; L[4]:=7; L[5]:= 9; i:=1; while (i<5) and (L[i] <> bil) do begin
i:=i+1;
end;
if (L[i]=bil) then
writeln('Ditemukan pada elemen larik ke-',i)
else
writeln('Tidak ditemukan!');
end;
begin
clrscr;
seq_search;
readkey;
end.

2.Pencarian Biner
Salah satu syarat agar pencarian biner dapat dilakukan adalah data sudah dalam
keadaan urut. Dengan kata lain, apabila data belum dalam keadaan urut, pencarian biner
tidak dapat dilakukan. Dalam kehidupan sehari-hari, sebenarnya kita juga sering
menggunakan pencarian biner. Misalnya saat ingin mencari suatu kata dalam kamus
Prinsip dari pencarian biner dapat dijelaskan sebagai berikut : mula-mula diambil
posisi awal 0 dan posisi akhir = N - 1, kemudian dicari posisi data tengah dengan rumus
(posisi awal + posisi akhir) / 2. Kemudian data yang dicari dibandingkan dengan data
tengah. Jika lebih kecil, proses dilakukan kembali tetapi posisi akhir dianggap sama
dengan posisi tengah –1. Jika lebih besar, porses dilakukan kembali tetapi posisi awal
dianggap sama dengan posisi tengah + 1. Demikian seterusnya sampai data tengah
sama dengan yang dicari.
Untuk lebih jelasnya perhatikan contoh berikut. Misalnya ingin mencari data 17
pada sekumpulan data berikut :
3 9 11 12 15 17 20 23 31 35
awal tengah akhir
Mula-mula dicari data tengah, dengan rumus (0 + 9) / 2 = 4. Berarti data tengah
adalah data ke-4, yaitu 15. Data yang dicari, yaitu 17, dibandingkan dengan data tengah
ini. Karena 17 > 15, berarti proses dilanjutkan tetapi kali ini posisi awal dianggap sama
dengan posisi tengah + 1 atau 5.
3 9 11 12 15 17 20 23 31 35
Awal tengah akhir
Data tengah yang baru didapat dengan rumus (5 + 9) / 2 = 7. Berarti data tengah
yang baru adalah data ke-7, yaitu 23. Data yang dicari yaitu 17 dibandingkan dengan
data tenah ini. Karena 17 < 23, berarti proses dilanjukkan tetapi kali ini posisi akhir dianggap sama dengan posisi tengah – 1 atau 6. 3 9 11 12 15 17 20 23 31 35 Awal tengah akhir Data tengah yang baru didapat dengan rumus (5 + 6) / 2 = 5. Berarti data tengah yang baru adalah data ke-5, yaitu 17. data yang dicari dibandingkan dengan data tengah ini dan ternyata sama. Jadi data ditemukan pada indeks ke-5. Pencarian biner ini akan berakhir jika data ditemukan atau posisi awal lebih besar daripada posisi akhir. Jika posisi sudah lebih besar daripada posisi akhir berarti data tidak ditemukan. Untuk lebih jelasnya perhatikan contoh pencarian data 16 pada data diatas. Prosesnya hampir sama dengan pencarian data 17. Tetapi setelah posisi awal 5 dan posisi akhir 6, data tidak ditemukan dan 16 < 17, maka posisi akhir menjadi posisi tengah – 1 atau = 4 sedangkan posisi awal = 5. 3 9 11 12 15 17 20 23 31 35 akhir awal Disini dapat dilihat bahwa posisi awal lebih besar daripada posisi akhir, yang artinya data tidak ditemukan. Algoritma pencarian biner dapat dituliskan sebagai berikut : 1 L ← 0 2 R ← N - 1 3 ketemu ← false 4 Selama (L <= R) dan (tidak ketemu) kerjakan baris 5 sampai dengan 8 5 m ← (L + R) / 2 6 Jika (Data[m] = x) maka ketemu ← true 7 Jika (x < Data[m]) maka R ← m – 1 8 Jika (x > Data[m]) maka L ← m + 1
9 Jika (ketemu) maka m adalah indeks dari data yang dicari, jika tidak data tidak
ditemukan
Di bawah ini merupakan fungsi untuk mencari data menggunakan pencarian biner.
int BinarySearch(int x)
{
int L = 0, R = Max-1, m;
bool ketemu = false;
while((L <= R) && (!ketemu))
{
m = (L + R) / 2;
if(Data[m] == x)
ketemu = true;
else if (x < data[m])
R = m - 1;
else
L = m + 1;
}
if(ketemu)
return m;
else
return -1;
}
Program 8.2 Fungsi Pencarian Data dengan Metode Biner
Fungsi diatas akan mengembalikan indeks dari data yang dicari. Apabila data
tidak ditemukan maka fungsi diatas akan mengembalikan nilai –1.
Jumlah pembandingan minimum pada pencarian biner adalah 1 kali, yaitu apabila
data yang dicari tepat berada di tengah-tengah. Jumlah pembandingan maksimum yang
dilakukan dengan pencarian biner dapat dicari menggunakan rumus logaritma, yaitu :
C = 2log(N)


refernce : http://informatika-hery.blogspot.com/2010/10/binary-search-pencarian-biner.html

Tidak ada komentar:

Posting Komentar